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people attempting to rendezvous need to consider and make. What makes this game complex is
that there are many stochastic factors such as road conditions involved. People cannot just start
for the meeting place and arrive exactly when they want to. This means that a trivial solution



case, I �nd pure strategy Nash equilibria characterized by two parameters,sands̄. These param-
eters respectively represent the earliest time at which players might depart and the latest time
at which players might depart, according to the players' strategies. So the parameters describe
how start time variation makes the players' departure times vary.

In subsection 4.1, for given departure times of the players, once the lower bounds on the
player's value of the meeting are satis�ed, players' values of the meetings can be arbitrarily
higher in the pure strategy Nash equilibria. It is not necessary the player with the comparatively
higher value of meeting that departs �rst in the pure strategy Nash equilibria. In the context of
meetings involving the head of states, this means that the heads can deliberately depart late for
a meeting and have the others wait for them.

In subsection 4.2, the Nash equilibria have low meeting probability because players do
not always come nor wait for each other. If players compensate each other for arriving early
and waiting, players might increase meeting probability and both their expected utilities. When
monetary compensations are dif�cult to implement, non-monetary compensations such as agree-
ing that “the person who arrives late pays for the meal” can work in their place.

However, unilateral punishments for late arrival that go beyond compensation may decrease
social welfare by harming the player who arrives earlier than the other player to avoid punish-



player's arrival and the cost of wait. In studying R&D, many papers have used the approach of
�nding the �rms' optimal research decisions by comparing the hazard rate of invention and the
cost of R&D. Kamien and Schwartz (1972) was the �rst to analyze multi-player R&D models
using hazard rates of inventions. However, in this paper, the �rm considered only the hazard
rate of invention for the composite rival and not its own hazard rate of invention. By doing so,
the �rm found the optimal invention time. In other words, the �rm, unlike its rivals, is able to
determine a invention time for its product.

All other subsequent papers I mention that study R&D using hazard rates instead have haz-
ard rates of invention for all �rms and �nd game theoretic solutions by considering the �rms'
hazard rate with the costs of R&D. Loury (1979) and Lee and Wilde (1980) deal with a setting
where every �rm is identical. By comparing the hazard rate of invention and costs of R&D,
�rms �nd the optimal investment in R&D to maximize expected pro�ts.2 Reinganum (1983)
analyzes an asymmetric setting with an incumbent �rm and a challenger �rm. This paper �nds
that the challenger invests more in R&D because the challenger has more to bene�t from in-
vestment since it does not have current revenue. Doraszelski (2003) shows that when the �rm's
hazard rate of invention is a weakly increasing function of the �rm's knowledge stock, the �rm
that is behind in R&D may invest more in R&D than the �rm that is ahead.3

Many different causes can result in varying travel times (Kwon et al. 2011; Wong and Suss-
man 1973). Iida (1999) de�nes travel time reliability as the probability of reaching the destina-
tion within a given time. The value of travel time reliability depends on the traveller's prefer-
ences. Polak (1987) and Senna (1994) derived expected utility formulas in which the value of
travel time reliability was made explicit. Small (1982) was the �rst to derive the Noland-Small
equation.4 The Noland-Small equation attempts to take into account the realistic considerations
that go into scheduling a trip. Travellers want shorter travel times. They also do not want to
arrive too early or too late. From the equation, I utilize the idea that the cost of travel time, cost
of arriving early and the cost of arriving late can be separated and expressed additively. In the
context of my model, the cost of arriving early becomes the cost of increased wait and the cost
of arriving late becomes the loss from decreased meeting chance.

2. Choi (1991) is the seminal paper in which �rms have the option to drop out from R&D. In my
model, this dropping out is comparable to giving up on the meeting and abandoning the meeting place.
Choi (1991) assumes that �rms do not know their hazard rates of inventions. However, they observe the
state of the other �rm. Therefore, if the other �rm makes partial progress on the invention, depending
on the parameters, this can lead the �rm to either drop out because of the technological gap or continue



3 Model

The rendezvous game has two people, player 1 and player 2, who make decisions about the
meeting. Each person needs to decide by herself 1) whether she wants to come to the meeting
at all, 2) when to depart for the meeting and 3) how long she waits for the other person at the
meeting place. In making these decisions, people consider both the consequences of their own
actions and the actions of the other person. While there is a bene�t to a successful meeting, this
comes at a cost of travelling time and potential waiting time. Leaving too early for the meeting
place can mean the person has to wait longer for the other person. Leaving too late might cause
the person to miss the other person entirely. People take these factors into consideration while
choosing when to leave for the meeting.

3.1 Payoffs

To model the considerations of the playeri 2 f 1;2g, I use an expected utility framework follow-
ing Morgenstern and Von Neumann (1953). When a player does not come to the meeting, her



times to the meeting place, as random variables the realization of which players do not know
before travelling.

By “continuous rendezvous games”, I mean that in this paper, for the most part,r i follows
a continuous distribution.6 The codomains of ther i 's areR+ . Ther i 's are independent of each
other and thesj 's. If a CDF exists forr i , the CDF isGi and if the PDF exists forr i , it is gi .

3.3 Stages

This is a 2-stage sequential game. playeri receives a private start time,si . Then, playeri chooses
whether to depart for the meeting place. If she chooses to depart, she also chooses a departure
time, di � si and receives an arrival time,ai = di + r i . di , r i andai are also private. Given that
player(s)i and j chooses (choose) to depart,r i andd j are conditionally independent. Later on,
in specifying the distribution ofai , Gi(t) = P(ai � t) is used. If playeri always comes to the
meeting,Gi(t) is a CDF ofai andGi(t) =

R
Gi(t � di) P(ddi).7 If Gi(t) has a PDF, it is written as

gi(t). The follwing is the speci�cation of the stages, which is depicted in �gure 1.

• Pre-game Setup

1. Nature assigns each playeri a random start time,si � 0.

• Simultaneous Actions in Stage 1

1. Each player decides on whether they will travel to the meeting place.

2. Each playeri who decided to travel decide the time at which they will depart for
the meeting place. This time is called the departure time ordi � si .

• Simultaneous Actions in Stage 2

1. Nature decides ther i 's for player who decided to travel in stage 1.

2. After seeing their ownai = di + r i 's, each playeri who decided to travel privately
decides the time beyond which they will not wait and instead, abandon the meeting
place. This time is called planned abandonment time orzi . playeri who travels
chooseszi 2 [0;¥ ], in other words,zi is an element of the extended real line.

• Payoffs

1. Players' payoffs are their expected utilities from the game. Given all the decisions
of the two stages, the rendezvous game is played out in the following way. Players
who decided not to come do nothing. Players who decided to come depart for
the meeting place atdi and realize travel time,r i . Now, their arrival time isai �
di + r i . Given their arrival time, we also have their actionable abandonment time,
zi � maxf ai ;zig. Thiszi is private information. The rendezvous is successful if and
only if both players come andmaxf a1;a2g � minf z1;z2g. If the rendezvous fails,
players who came leave the meeting space atzi .

6. It takes on uncountably many values.
7. I will explain the integral,Gi(t) =

R
Gi(t � di) P(ddi). If player i is to arrive no later than t, given

di , playeri's travel time must be no more thant � di . Hence, the integrand isGi(t � di). I integrate over
all di .

6



Figure 1: The stages of the game

For convenience, I de�ne a random variable M the following way.

M =

(
1 if maxf a1;a2g � minf z1;z2g (i.e. if rendezvous succeeds)

0 otherwise
(2)

By this de�nition, E(M) becomes the probability of the players meeting.8

A noteworthy point is that the players do not decide on their wait times, thewi 's directly. In
fact, players indirectly plan their wait times using their planned abandonment time. A player's
actual wait time depends on when she and the other player arrive. The following is the exact
formula for wait times.

wi =

(
maxf a1;a2g � ai if M=1

zi � ai otherwise
(3)

The logic for this indirection is similar to before. Once the players depart for the meeting place,
there is nothing they can do to change the other player's arrival time. Furthermore, how long
the players wait or when the players abandon the meeting place depends on the probability

8. By Lebesgue's dominated convergence theorem,M is Lebesgue integrable and equivalently,E(M)
is �nite.

7



distribution of the other player's arrival. Given the player's departure and arrival time, the ex
ante distribution of the other player's arrival tells the player when it is no longer worth it to wait
for the other player. The player would set that time as the planned abandonment time.9

Actionable abandon time,zi , exists to deal with cases where a player arrives after her
planned abandonment time. In that case, the player would want to leave immediately unless
her opponent is already at the meeting place. Then, the arrival time, not the planned abandon-
ment time is when she abandons the meeting place should she fail to meet. The meeting happens
if and only if both players arrive before any player would abandon the meeting place,

In this game, players can play mixed strategies. Thus, for a given arrival time,ai , player
i might have in�nitely many optimalzi 's or a unique optimalzi . Of course, the same is true
for zi as well. Therefore, I need notations that can signify those different cases. The following
introduces those notations.

I can de�ne the correspondencez �
i (ai) the following way when the set on the right-hand

side is not empty for a given arrival time,ai .

z �
i (ai) =





4 Results

4.1 Degenerate start time,si

Assumption 1. The following formulas hold for all i2 f 1;2g.

si = 0

If r i exists, ri � U(0;1).

ci(r i ;wi) = r i + wi

Assumption 1 speci�es the start times, thesi 's, the travel times, ther i 's and the costs, the
ci(r i ;wi)'s for this subsection. Here, players always start at time 0 and their travel time is
distributed uniformly. Cost is the sum of travel time and wait time,wi .

Assumption 2. Suppose that for any player i, �xed ai � 0 and �xed zi � ai , E(Mjai ;zi) = 1.
Then, for anyz that player i plays for a given ai , z � zi .

Assumption 2 caps how high planned wait time and actionable wait time can be for its cases.
It states that for a given arrival time ofai � 0, if waiting till time zi � ai is suf�cient to guarantee
a meeting probability of 1, playeri



Proposition 1. Under assumptions 1 and 2, the following for some i is necessary and suf�cient
for a pure strategy Nash equilibrium with E(M) > 0. (In stating the following, I ignore 0 prob-
ability events and planned abandonment times for cases where the player has a 0 probability to
wait)

(1) m̄i � maxf (di � d� i )2



Note that by (1) and (2), ¯m2 needs to satisfy both ¯m2 � m00
2(d1;d2) andm̄2 � m0

2(d1;d2)
while m̄1 only needs to satisfy ¯m1 � m0

1(d1;d2). m̄2 � m00
2(d1;d2) comes from the requirement

that player 2 weakly prefers not to delay departure. (For player 1, the condition that she weakly
prefers to not delay departure is not binding.) ¯m2 � m0

2(d1;d2) andm̄1 � m0
1(d1;d2) come for

the requirement that player 2 and player 1 respectively weakly prefer to come to the meeting
place. There is no upper bound on the players' values of meeting. Once the lower bounds on
the players' values of meeting in (1) and (2) are met, players can have much higher values of
meeting. Givend1 � d2, either player can value the meeting more highly in a pure strategy Nash
equilibrium.

Since players always meet in the Nash equilibria of the proposition, ¯m2 andm̄1 are respec-
tively player 2 and 1's expected bene�ts in the Nash equilibria.m0

2(d1;d2) andm0
1(d1;d2) are

respectively player 2 and 1's expected costs in the pure strategy Nash equilibria. Note that when
d1 = d2, the expected costs are equal and ¯m2 � m00

2(d1;d2) is not binding. Proposition 1's (3)
saysd2 � d1 < d2 + 1. There is no pure strategy Nash equilibrium withd1 � d2 = 1. This is
becaused1 � d2 ! 1, m00

2(d1;d2) = (d2� d1)2+ 1
2(d2+ 1� d1) ! ¥ .

Proposition 2. When d1 � 1 < d2 � d1, the following holds.

(1) m0
2, m00

2 and m0
1 + m0

2



Figure 2: g1(z2)
1� G1(z2) m̄2, g1(z2) and ¶c2

¶z2
whena2 = 1:5 for example 1

(2) m̄1 = 1
2 + (d2+ 1� d1)3

6 � 0:52

(3) d1 = 2

(4) d2 = d1 � 0:5 = 1:5

(5) z1 = d2 + 1 = 2:5

(6) z2 = d1 + 1 = 3

Proof. The proof is by proposition 7 in appendix 2. �

Now using hazard rate analysis, I will roughly explain why for speci�c arrival times, players
�nd it optimal to wait till the other player arrives. For this, I use example 1 and �gure 2 which
is on this example. However, the explanation applies to any player in any Nash equilibrium
of proposition 1. The �gure draws functions withzi , the actionable abandonment times on the
X-axis. This will help me �nd the optimalzi . Figure 2 depicts g� i (zi )

1� G� i (zi ) m̄i , player –i's hazard rate
of arrival atzi times player i's value of meeting, ¯mi , player –i's density of arrival atzi , g� i(zi)
and �nally ¶ci (ai � di ;zi � ai )

zzi



start time variation means that players may be unable to depart as early as they want to. The
travel times,r i 's are also uniformly distributed for players who travel. For this subsection,
proofs not found here are in appendix 3. The exact distributions are speci�ed in the following
assumption. This assumption for both players lays out the basic setting of the model.

Assumption 3.
si � U(0;1)
If r i exists, ri � U(0;1).

When players are able to depart as early as they want to because of start time variation, they
might depart later than they want to or not depart for the meeting. In order to describe these
phenomena and strategies, I de�ne two additional variables,s and s̄ in the de�nition below.
The main focus of this subsections is symmetric Nash equilibria when the players face such
constraints.12

De�nition 2. s2 [0;1) is used for the earliest departure time by the players' strategies.
s̄2 (s;1] is used for the earliest departure time by the players' strategies.

In the following assumption I explain how exactly player's strategies depend ons ands̄.

Assumption 4.
If si � s, di = s.
If si 2 (s; s̄], di = si .
If si=i2, d



Figure 3: A PDF of de�nition 3 with polygons delineated

De�nition 3.

(1) The following is a CDF.

Ḡ(x) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 x � s
x2� s2

2 x 2 [s; s̄]
s̄x� s̄2+ s2

2 x 2 [s̄;s+ 1]
s̄� (s̄+ 1� x)2

2 x 2 [s+ 1; s̄+ 1]
s̄ x2 [s̄+ 1;10]
(1� s̄)x+ 11s̄� 10 x 2 [10;11]
1 x � 11

(2) The following is a PDF of̄G(x).

ḡ(x) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 x < s

x x2 [s; s̄]
s̄ x2 [s̄;s+ 1]
s̄+ 1� x x2 (s+ 1; s̄+ 1]
0 x 2 [s̄+ 1;10)
1� s̄ x2 [10;11]
0 x > 11

The CDF and PDF from the above de�nition lets me consider the players' arrival times as



only have a positive probability of departing ats and she has a 0 probability of departing at any
other point. The area of A iss. The higher thes, the greater its area.

Going back to �gure 3, the B quadrilateral is from the player's departure afters for cases
where the player arrives befores+ 1 or ats+ 1. The upward sloping edge of the B quadrilateral
is due to the fact that if the player starts afters but not after ¯s, she departs immediately, adding
on to the area of the B quadrilateral. Lastly, the C triangle is from cases where the player arrives
afters+ 1. Player only arrives afters+ 1 when she departs afters. This results in the downward
sloping edge of the C triangle, which shows how the density of the players' arrival decreases
afters+ 1. In fact, unlesss= 0, the PDF jumps downwards ats+ 1. This decline in the PDF
justi�es why the players set their planned abandonment times tos+ 1 and do not wait afters+ 1.

The following de�nition introduces two functions used in concisely stating and proving the
results of this subsection.

De�nition 4.

ī(s; s̄) �
6+ 2(s̄+ 3)(s+ 1� s̄)3 + 3(( s̄� s)2 � 2s)(s+ 1� s̄)2

(12s̄� 6(s̄� s)2)(s+ 1� s̄)

w̄(s; s̄) �
1� s̄
s̄� s

+
s̄� s

2

Proposition 3. Under assumption 3 for both players, assumption 4 for both players is a pure
strategy Nash equilibrium if and only if̄m1 = m̄2 = ī(s; s̄) � w̄(s; s̄)

ī(s; s̄) is the function used for the indifference condition, ¯mi = ī(s; s̄). w̄(s; s̄) is the function
used for the wait cap condition, ¯mi � w̄(s; s̄). These two conditions are used to describe the
symmetric pure strategy Nash equilibria of proposition 3. Under assumption 3 for both players,
if and only if both conditions hold for both players, assumption 4 for both players is a Nash
equilibrium. (In these Nash equilibria, by lemma 2 and formula 8, the meeting probability is
(s̄� (s̄� s)2

2 )2.)
The �rst condition, m̄i = ī(s; s̄) means that player i's utility must be 0 when she departs

at s̄ and has a planned abandonment time ofzi = s+ 1.13 In other words, player i must be
indifferent between departing at ¯s to playzi = s+ 1 and not departing at all. Therefore, I call
this the indifference condition. In �gure 4,E(mi jdi) andE(ci jdi) respectively represent player i's
bene�t and cost when she departs atdi and playszi = s+ 1. (Figure 4 is drawn using proposition
9 in appendix 3.) In �gure 4 and any Nash equilibrium of proposition 3, the two curves intersect
atdi = s̄. Therefore, player i's expected utility atdi = s̄ is 0. So player i �nds it optimal to come
to the meeting when she starts before ¯sor ats̄. It also means that she �nds it optimal to not come
to the meeting if she starts later. If ¯mi is higher,E(mi jdi) increases atdi = s̄ and the intersection
moves to the right. In this case, player i prefers to increase her latest departure time. If ¯mi is
lower, E(mi jdi) decreases atdi = s̄ and the intersection moves to the left. In this case, player i
prefers to decrease her latest departure time.

The second condition, ¯mi � w̄(s; s̄) is necessary for a player i who arrives to weakly prefer
a planned wait time ofs+ 1 to a greater one. Hence, I call this the wait cap condition. I will
explain this condition roughly using �gure 5. Figure 5 applies the aforementioned technique of
converting the distribution of player -i's arrival time,a� i to follow de�nition 3 so that a CDF
and a PDF exist to representa� i . Then, I can perform hazard rate analysis under the restriction
of zi 2 [ai ;8].

13. This condition also implies that a participating player i weakly prefers a planned wait time of
zi = s+ 1 to a smaller one. This implication is shown by lemma 28 in appendix 3.

16



Figure 4:E(mi jdi) andE(ci jdi) whens= 0:3 ands̄ � 0:57

Figure 5: Hazard rate analysis using converteda� i whens

=







meeting engender low meeting chance in the Nash equilibria. Recall that the player's strategies
are symmetrical in the Nash equilibria. I �x ¯s< 1 and start from a Nash equilibria with highs.
Here, for low values of meeting, players are willing to have ¯sas their latest departure time. Now,
refer to �gure 4. For thiss ands̄, if players' values of meeting, ¯m1 andm̄2 are higher, this is no
longer a Nash equilibrium becauseE(mi jdi), player i's expected bene�t for speci�c departure
times would increase atdi = s̄. Therefore, players prefer to deviate to a higher latest departure
time and increase their departure probabilities.

Next, suppose the players change their departure strategy so that they have a lowersbut the
same ¯s. This is a more demanding departure arrangement. Refer to �gure 4 again. For the orig-
inal players' values of meeting,E(mi jdi) is belowE(ci jdi) at di = s̄. Therefore, players prefer
to deviate to a lower latest departure time. In other words, because they do not �nd it worth-
while to adhere to such a demanding departure arrangement and “fall off” by reducing arrival
probability. In order for them to �nd it worthwhile to adhere to the departure arrangement, their
values of meeting must increase whens decreases.

5 Discussion

5.1 Hazard rates and waits

The hazard rate of the other player's arrival often plays a key role in a player's wait decision.
I will explain this informally. Usually, by comparing g� i (zi )

1� G� i (zi ) m̄i to ¶ci (ai � di ;zi � ai )
¶zi

, the player

can �gure out the sign of the marginal utility of actionable wait time,zi . Here, g� i (zi )
1� G� i (zi ) is the

hazard rate of the other player's arrival which represents how likely the other player is to arrive
marginally given that she has not arrived yet. To use this comparison, if the other player arrives
�rst, she needs to wait until the player arrives. To restate, in deciding to wait marginally, the



implies that people who value the meeting highly enough to travel to it are willing to wait for it.
Therefore, in reality, people would be likely to plan to wait for a substantially long time.

5.2 Strategic complementarity of arrivals and planned waits

I will �rst explain the strategic complementary of arrivals. The model always has a trivial pure
strategy Nash equilibrium where both player never come to the meeting place. Here, no player
ever comes because the other player never comes. When the players' values of meeting are
suf�ciently high, this Nash equilibrium coexists with Nash equilibria where players come and
meet with positive probability such as those in propositions 1 and 3.

Now I will discuss the set of Nash equilibria of proposition 3 using �gure 6. Here, as shown
in proposition 4, ¯s is decreasing in the players' values of meeting, ¯m1 andm̄2. This means that
players' departure probability and meeting probability are decreasing in the players' values of
meeting. In these Nash equilibria, ¯s < 1 is true and strategic complementary of arrival works
to lesson the departure probability of both players. In other words, because a player does not
always come in the Nash equilibria, the other player also chooses to not always come.

To see this in the �gure, pick a point on thēi(s; s̄) line where ¯s 2 (s; �s]. (Recall that the
ī(s; s̄) line is where players are indifferent between departing for the meeting place at ¯s and
not departing) On this point, �x the values of the players values of meeting, ¯m1 and m̄2 as
m̄1 = m̄2 = ī(s; s̄). Here, there exists a Nash equilibria of proposition 3. For a higher ¯s, m̄1 and
m̄2 are above thēi(s; s̄) line. This means that if any player deviates from the Nash equilibrium
strategy to play a strategy where they depart even if they start later than ¯s, the other player will
be willing to also depart even if they start later than ¯s. This demonstrates that both players are
stuck at the Nash equilibria with low ¯s, arrival probability and meeting probability because the
other player plays the strategy with the low ¯s.



5.3 Meeting values and departure times

In the Nash equilibria of proposition 1, the player who departs earlier is not necessarily the
player who values the meeting more. Once the lower bound conditions of the proposition's
(1) and (2) are met, the players' values for the meeting can be arbitrarily higher. Proposition
2 reveals that in these Nash equilibria, the comparatively earlier the player departs, the higher
her expected cost. Therefore, players want to depart late and have the other player wait for
them. Proposition 2's (1) shows that the sum of the players' expected costs is increasing in
the absolute value of the difference in players' departure times. The player who departs earlier
incurs excessive expected wait cost from a social welfare perspective and the more the players
departure times differ, the lower the social welfare.



has to be on or above theī(s; s̄) line so that the players are willing to depart at ¯s.) The �gures
show that this does not necessary require that ¯m1 = m̄2 be higher than the level at the Nash
equilibria of the proposition. Whens, s̄, m̄1 andm̄2 take on the values, the wait cap condition,
8i 2 f 1;2g;m̄i � w̄(s; s̄) is violated so players prefer to wait beyonds+ 1 when they arrive.

Another way to see this is to look at �gures 3. In �gure 3, increasing ¯s also increases the



settings, unilateral penalty provisions that go beyond estimated damages can result in a decrease
in social welfare.

The Nash equilibria of proposition 1 applies to the supply chain setting in the following way.
From the upstream's perspective, departure corresponds to the �rm starting work on the project
or the product contracted by the downstream. Arrival corresponds to the �rm �nishing the
contracted work on this project or product. This can be delivery or installation of the product.
Wait time corresponds to the time from the completion of the upstream's work to when the
downstream �rm actually makes use of what the upstream completed.

From the downstream's perspective, departure means the downstream begins preparations
for making use of the upstream's project or product. This preparation can be making space
in its shelves or warehouses to place the product. It can also be readying the environment
for the upstream's work or the installation of the product. In other cases, the downstream might
prepare parts or equipment it will use in conjunction with the upstream's product. Arrival means
completion of the preparations. Wait time is the time from the completion of the preparations
to when the downstream actually starts makes use of the product or project from the upstream
�rm.

The meeting succeeds when the downstream �rm receives the upstream �rm's project or
product and starts to make use of it. For instance, if the downstream starts using the parts from
the upstream �rm in assembly, that corresponds to a successful meeting. If the downstream �rm
displays and starts selling the product it receives from the upstream �rm, that also corresponds
to a meeting.

Consider the following unilateral penalty. If player 2 arrives late, she pays player 1 but
player 1 never pays player 2. Player 2 needs a high value of the meeting for her to depart
comparatively early and pay the high expected cost. A high �ne on player 2's late arrival,
provides the incentive for player 2 to not delay departure. By having player 2 depart early and
wait for player 1, player 1 extracts player 2's surplus. In a supply chain setting, player 2's value
of the meeting would be mostly determined by the payment for the ful�llment of the contract.
For player 1, unlike raising this payment to lower player 2's departure time, raising player 2's
�ne for late arrival is costless and also guarantees that player 2 cannot depart comparatively late.

Liquidated damages can compensate players for their wait costs. As discussed in the pre-



when players value the meeting more and depart at earlier times, since both players expect the
other player to arrive earlier, both will abandon the meeting place earlier than before.

Suppose players initially �xs > 0 instead of ¯s. In this case, as proposition 4 and �gure 6
show, in the set of these Nash equilibria, ¯s is decreasing in the players' values of the meeting.
Meeting probability,(s̄� (s̄� s)2

2 )2 is increasing in ¯s. Therefore, higher values of meeting lead to
a lower meeting probability in this case also. However, ¯scannot besor smaller. This guarantees
that when players initially �xs, the in�mum of meeting probability iss2.

One way people can move to a Nash equilibrium with high meeting probability is the fol-
lowing script. A person may start by asking the question of “When is a good time for you to
meet?”. After the two people �nd a meeting time at which they can arrive with high reliability,
they could promise that “We won't come early but we will wait moderately”.

When players are constrained by start time variation, this script can lead them to a Nash
equilibrium of proposition 3 and a meeting probability greater thans2. By saying, “We won't



Appendix 1. Intermediate results and proofs

The lemmas and propositions that are stated and/or proven here are about the basic attributes of
the game and are used elsewhere to derive other results. When any of the four equivalent con-
ditions in the lemma below is satis�ed, the players meet. Reformulating the meeting condition
helps prove many other results.

Lemma 2.

maxf a1;a2g � minf z1;z2g (7)

$

a1 = a2, a1 � a2 � z1 or a2 � a1 � z2 (8)

$

a1 � a2 � z1 or a2 � a1 � z2 (9)

$

a2 � z1 and a1 � z2 (10)

Proof. I will �rst prove (7) ! (8). Supposea1 = a2. The consequent holds. Using symmetry,
supposea1 < a2. a2 � z1 $ a2 � maxf a1;z1g ! a2 � z1. Thusa1 � a2 � z1.

Now I will prove (8) ! (9). If a1 = a2, a1 = a2 � z1. Using symmetry, ifa1 � a2 � z1,
a1 � a2 � z1 � z1.

Now I will prove (9) ! (7). Using symmetry, ifa1 � a2 � z1, a1 � a2 � z2.
Equations 7, 8 and 9 are equivalent.
Now I will prove (7) ! (10). If equation 7 holds,maxf a1;a2g � z1 andmaxf a1;a2g � z2.
Now I will prove (10)! (9). Using symmetry, if equation 10 holds anda1 � a2, a1 � a2 �

z1. �

The following proposition is used in marginal analysis. The proposition's (1) is used to state
the marginal expected utility of actionable abandonment time,zi . The proposition's (2) is used
to �nd the sign of the marginal expected utility of actionable abandonment time,



Proof. Using symmetry, I sayi = 1. Supposec1 is differentiable inw1, g2 exists andg2 is
continuous ind. Fix d1, a1, z1 andz0

1 � z1 so that they are possible values andf z1;z0
1g � d. The

following de�nition slightly abuses notation.

4 (z0
1;z1) � E(u1jd1;a1;z0

1;a2) � E(u1jd1;a1;z1;a2)

If a2 � a1 � z2, 4 (z0
1;z1) = 0.

If a2 � z2 < a1, 4 (z0
1;z1) = � c1(a1 � d1;z0

1 � a1) + c1(a1 � d1;z1 � a1).
If a1 � a2 � z1, 4 (z0

1;z1) = 0:
If a1 � z1 < a2 � z0

1, 4 (z0
1;z1) = m̄1 � c1(a1 � d1;a2 � a1) + c1(a1 � d1;z1 � a1).

If a1 � z1 � z0
1 < a2, 4 (z0

1;z1) = � c1(a1 � d1;z0
1 � a1) + c1(a1 � d1;z1 � a1).

If g2 exists,P(a1 = a2) = 0.

E(u1jd1;a1;z0
1) � E(u1jd1;a1;z1) = m̄1P(a1 � z1 < a2 � z0

1)
� (P(a2 � z2 < a1) + P(a1 � z1 � z0

1 < a2))( c1(a1 � d1;z0
1 � a1) � c1(a1 � d1;z1 � a1))

�
Z z0

1

z1

(c1(a1 � d1;x� a1) � c1(a1 � d1;z1 � a1))g2(x) dx

= m̄1

Z z0
1

z1

g2(x) dx

� (P(z2 < a1) + 1� G2(z0
1))( c1(a1 � d1;z0

1 � a1) � c1(a1 � d1;z1 � a1))

�
Z z0

1

z1

(c1(a1 � d1;x� a1) � c1(a1 � d1;z1 � a1))g2(x) dx

By the fundamental theorem of calculus,G0
� i(z0

i) = g� i(z0
i) when the domain ofz0

i is d for the
differentiation. Therefore, by the Leibniz integral rule, for the same domain for differentiation,

¶E(ui jd1;a1;z0
1)

¶z0
1

= m̄1g2(z0
1) � (P(z2 < a1) + 1� G2(z0

1))
¶c1(a1 � d1;z0

1 � a1)
¶z0

1
:

This proves (1). Now I will prove (2) with the �xed values from (1).

P(z2 < a1) + 1� G2(z1) = P(z2 < a1) + P(z1 < a2) (12)

Supposez2 < a1 andz1 < a2. If a1 � a2, a1 � z2. If a2 < a1, a2 � z1. Thusf z2 < a1g and
f z1 < a2g are disjoint sets.

P(z2 < a1) + P(z1 < a2) =
P(f z2 < a1g [ f z1 < a2g) = 1� P(f a1 � z2g \ f a2 � z1g) = 1� E(M) (13)

Here, the last equality is by lemma 2 and equation 10. By equations 12 and 13, I have the
following.

P(z2 < a1) + 1� G2(z1) = 1� E(Mja1;z1) (14)

�

27



Lemma 3. Suppose g1 and g2 exist.

E(mi jdi ;d� i ;zi ;z� i) = m̄i(
Z zi

di

Gi(x� di)g� i(x� d� i) dx

+
Z z� i

d� i

gi(x� di)G� i(x� d� i) dx)
(15)

Proof. Using symmetry, I will prove fori = 1. E(m1jd



SinceG1 andG2 have PDF's, they are absolutely continuous. Therefore, I can use integration
by parts for the last equality.24

I now have
R

a1< a2
m1dP=

Rz1
d1

G1(x� d1)g2(x� d2) dx. Recall thatm1 = m̄1 if and only if

the meeting succeeds. Therefore, symmetry gives
R

a1> a2
m1dP=

Rz2
d2

G2(x� d2)g1(x� d1) dx.

E(m1) = m̄1(
Z z1

d1

G1(x� d1)g2(x� d2) dx+
Z z2

d2

g1(x� d1)G2(x� d2) dx) (16)

�

The above lemma calculates the expected bene�t of the game using integration. To under-
stand lemma 3, I can refer to lemma 2 and formula 8. In a continuous setting like this one
where the probability of the players meeting by arriving at exactly the same time is 0, I only
need consider two scenarios of a successful meeting.ai � a� i � zi includes the scenario where
player i comes and player� i comes after playeri but before playeri abandons the meeting
place. a� i � ai � z� i includes the scenario where player� i comes and playeri comes after
player � i but before player� i abandons the meeting place. I assumeai 6= a� i for now and
this means that theai � a� i � zi anda� i � ai � z� i are mutually exclusive. One player must
come �rst andai < a� i anda� i < ai cannot be true at the same time. In order forai � a� i � zi

to happen, player� i needs to arrive betweendi andzi (inclusive). Also, playeri needs to ar-
rive before player� i. This explains the

Rzi
di

Gi(x� di)g� i(x� d� i) dx part of equation 15. The
Rz� i

d� i
gi(x� di)G� i(x� d� i) dx part is explained in a similar way.

Appendix 2. Lemma and proofs used in subsection 4.1

Lemmas used in this section but not found in this paper are in chapter 1 of the Supd calcz



If formula 17 holds, I have the following.

8ai 2 [di ;d� i ] : d� i + 1 2 z�
i (ai) (18)

Whenai 2 [d� i ;di + 1], lemma 16's (3) means following.

P(z� i < ai) = 0:

P(z� i < ai) +
d� i + 1� ai

2
�

1
2

� m̄i

Therefore, the following holds by lemma 11.

8ai 2 [d� i ;di + 1] : d� i + 1 2 z�
i (ai) (19)

By lemma 12, I have the following.

8ai 2 [d� i ;minf 2m̄i + d� i � 1;d� i + 1g) : d� i + 1 2 z�
i (ai) (20)

Now, I will look into z�
� i . Whena� i 2 [d� i ;di + 1], lemma 16's (2) means following.

P(zi < a� i) = 0:

P(zi < a� i) +
di + 1� a� i

2
�

1
2

� m̄� i

Therefore, the following holds by lemma 11.

8a� i 2 [d� i ;di + 1] : di + 1 2 z�
� i(a� i) (21)

If a� i 2 [di + 1;d� i + 1], P(ai � a� i � zi) = 1 and by lemma 19, I have the following.

8a� i 2 [di + 1;d� i + 1] : a� i 2 z�
� i(a� i) (22)

a� i > d� i + 1 is impossible.
By what I have �gured out till now aboutz�

i and z�
� i . I know that when formula 17 is

satis�ed, the players �ndzi andz� i of the Nash equilibrium optimal.
Next, I will look at di . I will �nd player i's utility in the Nash equilibrium. In the Nash

equilibrium, by lemma 2 and formula 9,

E(M) = 1: (23)

The following is player i's cost in the Nash equilibrium.

E(ci) = E(r i) + E(wi) =
1
2

+
Z

ai � d� i

a� i � ai dP+
Z

d� i � ai � di+ 1;d� i � a� i � di+ 1
maxf 0;a� i � aigdP

+
Z

d� i � ai � di+ 1;di+ 1� a� i

a� i � ai dP=

1
2

+
Z d� i

di

Z d� i+ 1

d� i

y� xdydx+
Z di+ 1

d� i

Z di+ 1

x
y� xdydx

+
Z di+ 1

d� i

Z d� i+ 1

di+ 1
y� xdydx=

1
2

+ ( d� i + 1� di)
d� i � di

2
+

(di + 1� d� i)3

6
+ ( di + 1� d� i)

d� i � di

2
=

1
2

+
(di + 1� d� i)3

6
+ d� i � di

(24)

30



Therefore, in order for player i to weakly prefer coming to the meeting, the following condition
is required.

m̄i �
1
2

+
(di + 1� d� i)3

6
+ d� i � di

Note that this condition makes the condition imposed by formula 17 unnecessary.
Fix the value ofdi in the Nash equilibrium as d. By lemma 7,di < d is not optimal. By

lemma 17's (1),di > d� i is not optimal. In �nding the optimaldi , I only need considerdi 2
[d;d�d



Using the Leibniz integral rule, I now �nd derivatives for the case where, in addition to the
conditions above,d < d� i also holds.

¶E(ci)
¶di

= ( zi � di



If d0< di + 1, the following derivative exists.

¶E(M)
¶d� i

= � 1 (33)

E(c� i) = E(r � i) + E(w� i) =
1
2

+
Z

d� i � ai � di+ 1;d� i � a� i � di+ 1
maxf 0;ai � a� igdP=

1
2

+
Z di+ 1

d� i

Z di+ 1

x
y� xdydx=

1
2

+
(di + 1� d� i)3

6
(34)

If d0< di + 1, the following derivative exists.

¶E(c� i)
¶d� i

= �
(di + 1� d� i)2

2
(35)

Recall thatzi = d0+ 1 here. By equations 32 and 34, in order for player -i to weakly prefer
coming to the meeting, the following condition needs to be ful�lled.

m̄� i �
1
2

+
(di + 1� d� i)3

6
(36)

If d0< di + 1, I have the following derivative by equations 33 and 35.

¶E(ui)
¶d� i

= � m̄� i +
(di + 1� d� i)2

2

If formula 36 is ful�lled, m̄i � 1
2 and sinced0� di , the following holds.

8d� i 2 [d0;di + 1] : m̄� i �
(di + 1� d� i)2

2

In this case, player -i does not prefer to delay her departure. �

Proof of Proposition 1.

Compare propositions 1 and 7. (1)� (3) from both propositions map to each other in order.
Ignoring 0 probability events andz j for cases where the player j has a 0 probability to wait,
(4)� (6) of proposition 7 means (4) of proposition 1. �

Proposition 8. In the Nash equilibria of proposition 1, the following properties hold.

8i 2 f 1;2g;zi � ai :
¶ci(ai � di ;zi � ai)

¶zi
= 1 (37)

8i 2 f 1;2g;ai 2 [di ;di + 1] :
g� i(zi)

P(z� i < ai) + 1� G� i(zi)
=

g� i(zi)
1� G� i(zi)

: (38)

8a2 2 [d2;d2 + 1] :
g1(z2)

1� G1(z2)
=

8
><

>:

0 z2 2 [d2;d1)
1

d1+ 1� z2
z2 2 [d1;d1 + 1)

does not exist. z2 � d1 + 1

(39)

33



If z2 = d1 + 1, g1(z2) = 1. If z2 > d1 + 1, g1(z2) = 0.

8a1 2 [d1;d1 + 1] :
g2(z1)

1� G2(z1)
=

(
1

d2+ 1� z1
z1 2 [d1;d2 + 1)

does not exist. z1 � d2 + 1
(40)

If z1 = d2 + 1, g2(z1) = 1. If z1 > d2 + 1, g2(z1) = 0.

¶E(M)
¶d2

=

8
>>>>>><

>>>>>>:

0 d2 < z1 � 1

d1 � d2 � 1 d2 2 (z1 � 1;d1]
� 1 d2 2 [d1;z1)
d2 � d1 � 1 d2 2 (z1;d1 + 1]
0 d2 � d1 + 1

(41)

¶E(c2)
¶d2

=

8
>>>>>>>>><

>>>>>>>>>:

� 1 d2 � d1 � 1
(d2+ 1� d1)2

2 � �
(
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0 1 d2proof Td [(z)]TJ/F76 7.9701F76 779 39 78 61.979572 T/F28 10.9091 Tf 4.483 1.637 Ti1.636 Td [(1)]TJ/F31 10.78 10.909:72 T/F28 10.9091 Tf  10.78 10.909c72 T/F28 11zz[(>)]TJ 0 -3.22.710.9091 Tf 6.907 1.636 Td [(2)]TJ/F28 19.900t3z
2z1



I already have the derivatives for the case when the domain isd2 2 [z1 � 1;d1] and it is a
proper interval. I can use formula 26 and 28.

¶E(M)
¶d2

= d1 � d2 � 1

¶E(c2)
¶d2

= �
(d2 � d1)2 + 1

2

For the case where the domain isd2 2 [d1;z1], I have the following equations.

E(M) =
Z d1+ 1

d2

x� d2dx+
Z z1

d2

x� d1dx=
Z d1+ 1� d2

0
xdx+

Z z1

d2

x� d1dx

¶E(M)
¶d2

= � (d1 + 1� d2) � (d2 � d1) = � 1

E(c2) =
Z

d1+ 1� a2� d2+ 1
a2 � d2dP+

Z

a1� a2;a2� z1

a2 � d2dP+
Z

a2� a1

a1 � d2dP+
Z

a1� a2;z1� a1� d1+ 1
d1 + 1� d2dP=

Z d2+ 1

d1+ 1
x� d2dx+

Z z1

d2

(x� d2)(x� d1) dx+
Z d1+ 1

d2

Z x

d2

x� d2dydx+
Z d1+ 1

z1

(d1 + 1� d2)(1

d



E(c2) =
Z d2+ 1

d1+ 1
x� d2dx+

Z d1+ 1

d2

Z x

d2

x� d2dydx+
Z d1+ 1

d2

(d1 + 1� d2)(x� d1) dx=
Z 1

d1+ 1� d2

xdx+
Z d1+ 1

d2

(x� d2)2dx+
Z d1+ 1

d2

(d1 + 1� d2)(x� d1) dx=
Z 1

d1+ 1� d2

xdx+
Z d1+ 1� d2

0
x2dx+

Z d1+ 1

d2

(d1 + 1� d2)(x� d1) dx

¶E(c2)
¶d2

=

d1 + 1� d2 � (d1 + 1� d2)2 � (d1 + 1� d2)(d2 � d1) +
Z d1+ 1

d2

� (x� d1) dx=

�
1
2

+
(d1 � d2)2

2

If the domain isd2 � d1 + 1, E(M) = 0 andE(c2) = 0:5.

¶E(M)
¶d2

=
¶E(c2)

¶d2
= 0

If the domain isd2 � d1 � 1,

E(c2) =
Z

a1 � a2dP=
Z d2+ 1

d2

Z d1+ 1

d1

y� xdydx= d1 � d2

andxdyd

¶d2
2� 0:



When the domain isd1 2 [d2 + 1;z2] and it is a proper interval,E(M) = z2 � d1 by lemma 2



Appendix 3. Results and proofs used in subsection 4.2



The above lemma deals with the distribution of player i's arrival time,ai . It statesP(ai � x)
and ¶P(ai � x)

¶x . De�nition 3 uses these to create de�nition 3's CDF and PDF.

Proposition 9. Under assumption 3 for both players and assumption 4 for player� i, the fol-
lowing formulas hold for player i whenzi = s+ 1.

(1)

E(Mjdi) =

8
><

>:

s̄� (s̄� s)2

2 di � s

(s̄� (s̄� s)2

2 )(s+ 1� di) di 2 [s;s+ 1]
0 di > s+ 1

(2) If di � s,

E(wi jdi) =
Z s

di

Z s̄

s
(y� x)ydydx+

Z s

di

Z s+ 1

s̄
(y� x)s̄dydx+

Z s̄

s

Z s̄

x
(y� x)ydydx+

Z s̄

s

Z s+ 1

s̄
(y� x)s̄dydx+

Z di+ 1

s̄

s+ 1� x
2

s̄(s+ 1� x) dx+ ( 1� s̄+
(s̄� s)2

2
)(s� di + 0:5):

If di 2 [s; s̄],

E(wi jdi) =
Z s̄

di

Z s̄

x
(y� x)ydydx+

Z s̄

di

Z s+ 1

s̄
(y� x)s̄dydx

+
Z s+ 1

s̄

s+ 1� x
2

s̄(s+ 1� x) dx

+ ( 1� s̄+
(s̄� s)2

2
)(s+ 1� di)

s+ 1� di

2
:

(47)

If di 2 [s̄;s+ 1],

E(wi jdi) =
Z s+ 1

di

s+ 1� x
2

s̄(s+ 1� x) dx+ ( 1� s̄+
(s̄� s)2

2
)(s+ 1� di)

s+ 1� di

2
:

(48)

If di � s+ 1,

E(wi jdi) = 0:

Proof. (1) uses the fact that whenzi = s+ 1, by lemma 2 and formula 8, the players meet when
ai � s+ 1 anda� i � s+ 1.

(2) uses the fact that whenx 2)(s



Example 2. Suppose player -i's arrival time follows de�nition 3 and thatz� i = s+ 1.

(1) Under assumption 3, when di and ai are given,

¶ci(ai � di ;zi � ai)
¶zi

= 1:

(2) when ai is given,

g� i(zi)
E(1P(z� i< ai ) jai) + 1� G� i(zi)

=
g� i(zi)

P(z� i < ai) + 1� G� i(zi)

(3) If ai 2 [0;s+ 1], zi � 8 ands̄< 1,

g� i(zi)
P(z� i < ai) + 1� G� i(zi g� i(zi)

1 � G� i(zi) g� i(zi)i



Next, I will prove that if �sexists, �s� s< 1
3.

d( 1
s̄� s + s̄� s

2 )
d(s̄� s)

= �
1

(s̄� s)2 +
1
2

< 0 (49)

w̄(s; s̄) = 1
s̄� s + s̄� s

2 is decreasing in ¯s� s.

¶(2(s̄� s) � (s̄� s)2)
¶(s̄� s)

= s+ 1� s̄> 0 (50)

2(s̄� s) � (s̄� s)2 is increasing in ¯s� s.
Consider the case where ¯s� s � 0:5. This implies ¯s � 0:5.

ī(s; s̄) =
6+ 2(s̄+ 3)(s+ 1� s̄)3 + 3(( s̄� s)2 � 2s)(s+ 1� s̄)2

(12s̄� 6(s̄� s)2)(s+ 1� s̄)
�

6
(12s̄� 6(s̄� s)2)(s+ 1� s̄)

�
12

12s̄� 6(s̄� s)2 �
1

s̄� 1
8

�
8
7

(51)

Here, the �rst weak inequality uses equation 34.

w̄(s; s̄) =
1� s̄
s̄� s

+
s̄� s

2
=

1� s̄+ s
s̄� s

+
s̄� s

2
�

s
s̄� s

=
1

s̄� s
+

s̄� s
2

�
s

s̄� s
� 1 (52)

By formula 49, I have the following.

w̄(s; s̄) � 2+
1
4

�
s

s̄� s
� 1 �

5
4

� s (53)

Whens� 1
4, formulas 51 and 53 mean that this is not a Nash equilibrium. Supposes< 1

4.

12s̄� 6(s̄� s)2 = 6(2s̄� (s̄� s)2) = 6(2(s̄� s) + 2s� (s̄� s)2) < 6+ 12s< 9

Combine the above result with 12
12s̄� 6(s̄� s)2 from formula 51.

ī(s; s̄) >
4
3

(54)

Formula 53 and inequality 54 means that this is not a Nash equilibrium.

)2



Here, the �rst weak inequality uses equation 34. The penultimate weak inequality uses the
fact that 6� 3x� 6s

6x+ 12s is decreasing inx and formula 50. Combine formulas 55 and 56. In a Nash
equilibrium, the following holds.

13
4

� 3s̄>
9

12s̄� 2
3

+
1
11

(
13
4

� 3s̄)(12s̄�
2
3

) > 9+
1
11

(12s̄�
2
3

)



Next, I will prove that when̄i(s; s̄) � w̄(s; s̄), ī(s; s̄) is decreasing in ¯s. By the quotient rule
and equation 34, it is suf�cient to show that the following inequality holds.

¶((12s̄� 6(s̄� s)2)(s+ 1� s̄))
¶s̄

�

6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2

(12s̄� 6(s̄� s)2)(s+ 1� s̄)
>

¶(6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2

¶s̄

(60)

¶(6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2

¶s̄
=

� 6(s+ 1� s̄)3 � 6s̄(s+ 1� s̄)2 � (12� 12s̄+ 6(s̄� s)2)(s+ 1� s̄) < 0
(61)

¶((12s̄� 6(s̄� s)2)(s+ 1� s̄))
¶s̄

= 12((s+ 1� s̄)2 � (s̄�
(s̄� s)2

2
)) (62)

Consider the case where ¯s� s � 1
4.

12((s+ 1� s̄)2 � (s̄� (s̄� s)2

2 ))
(12s̄� 6(s̄� s)2)(s+ 1� s̄)

=
2(s+ 1� s̄)
2s̄� (s̄� s)2 �

1
s+ 1� s̄

�

3
2

1
2 + 2s� 1

16

�
4
3

�
24
39

�
4
3

= �
28
39

Here, the �rst weak inequality uses¶(2s̄� (s̄� s)2)
¶s̄ > 0. Therefore, a suf�cient condition is the

following.

� (6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2) �
28
39

>

� 6(s+ 1� s̄)3 � 6s̄(s+ 1� s̄)2 � (12� 12s̄+ 6(s̄� s)2)(s+ 1� s̄)

6(s+ 1� s̄)3 + 6s̄(s+ 1� s̄)2 + ( 12� 12s̄+ 6(s̄� s)2)(s+ 1� s̄) >

(6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2) �
28
39

(63)

¶(6(s+ 1� s̄)3 + 6(s̄� s)2(s+ 1� s̄))
¶(s̄� s)

= � s
)

¶(

)
= � s � + 3))

(6fls+s

)



I transform the above using27
8 � 9� 28

39( 54
64 � 54

16) < 0.

6�
27
64

+ 6�
9
16

+
6
16

�
3
4

>
28
39

(6+ 2�
27
64

+
3
9

�
9
16

)

Since the above inequality holds, the ¯s� s � 1
4 case is proven.

Now consider the case where ¯s� s< 1
4.

¶((s+ 1� s̄)2 + (s̄� s)2

2 )
¶(s̄� s)

= 3(s̄� s) � 2 < 0

Therefore,

(s+ 1� s̄)2 � (s̄�
(s̄� s)2

2
) >

19
32

� s̄:

If s̄ � 19
32, by formulas 60, 61 and 62, the case is proven. If ¯s> 19

32, formulas 60, 61 and 62 give
me the following suf�cient condition.

12(
19
32

� s̄)
6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2

(12s̄� 6(s̄� s)2)(s+ 1� s̄)
>

� 6(s+ 1� s̄)3 � 6s̄(s+ 1� s̄)2 � (12� 12s̄+ 6(s̄� s)2)(s+ 1� s̄)

6(s+ 1� s̄)3 + 6s̄(s+ 1� s̄)2 + ( 12� 12s̄+ 6(s̄� s)2)(s+ 1� s̄) >

12(s̄�
19
32

)
6+ 2s̄(s+ 1� s̄)3 + ( 6� 6s̄+ 3(s̄� s)2)(s+ 1� s̄)2

(12s̄� 6(s̄� s)2)(s+ 1� s̄)

From the above, I use the following to transform the inequality.

s̄� 19
32

s̄� 0:5(s̄� s)2 �
s̄� 19

32

s̄� 0:125
�

13
32

0:875
< 0:5

12(s



Proof of Proposition 3.

Necessity is is by proposition 4's (1) and (2). I will prove suf�ciency. If ¯s< 1 andm̄1 = m̄2 =
ī(s; s̄) � w̄(s; s̄), by lemma 28, ¯mi > � (s̄� s)3+ 3(s̄� s)2� 3s̄+ 6

6s̄� 3(s̄� s)2 is satis�ed. Then, lemma 21's (1) and
lemma 25 show that assumption 4 for both players is a Nash equilibrium. Lemma 26 establishes
that if s̄= 1, ī(s; s̄) � w̄(s; s̄) is violated. �

Lemma 5. If s̄< 1 ands̄� s �
p

2� 2s̄, ī(s; s̄) > w̄(s; s̄)

Proof. Suppose ¯s� s=
p

2� 2s̄+ e for e � 0. s̄ �
p

2� 2s̄+ e. From de�nition 4, I have the
following.

sp(s̄) =

(
1
2

+ s̄
(s+ 1� s̄)3

6
)
p

2� 2s̄+ e� (2� 2s̄+
e
2

)(1�
p

2� 2s̄+ e)
s̄+ s

2
�

(
1
2

+ s̄
(s+ 1� s̄)3

6
)
p

2� 2s̄+ e� (2� 2s̄+ e)(1�
p

2� 2s̄+ e)
s̄+ s



By equation 48, I have the following equations.

E(wi jdi = s̄;zi = s+ 1;s� i) =
Z s+ 1

s̄

s+ 1� x
2
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